Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-(3-Fluorophenyl)-1-(propan-2-ylidene)thiosemicarbazone

Barbara Miroslaw, ${ }^{\text {a* }}$ Daniel Szulczyk, ${ }^{\text {b }}$ Anna E. Koziol ${ }^{\text {a }}$ and Marta Struga ${ }^{\text {b }}$

${ }^{\text {a }}$ Faculty of Chemistry, Maria Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland, and ${ }^{\mathbf{b}}$ Department of Medical Chemistry, The Medical University, 3 Oczki Str., 02-007 Warsaw, Poland
Correspondence e-mail: barbara.miroslaw@poczta.umcs.lublin.pl
Received 17 August 2011; accepted 13 October 2011
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; R factor $=0.068 ; w R$ factor $=0.217$; data-to-parameter ratio $=14.1$.

The title compound, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{~S}$, crystallizes in the same space group $\left(P 2_{1} / c\right)$ as two polymorphic forms of 4-phenyl-1-(propan-2-ylidene)thiosemicarbazone [Jian et al. (2005). Acta Cryst. E61, o653-o654; Venkatraman et al. (2005). Acta Cryst. E61, o3914-o3916]. The arrangement of molecules relative to the twofold screw axes is similar to that in the crystal structure of the lower density polymorph. In the solid state, the molecular conformation is stabilized by an intramolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bond. The molecules form centrosymmetric $R_{2}^{2}(8)$ dimers in the crystal through pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds.

Related literature

For related structures, see: Basu \& Das (2011); Park \& Ahn (1985); Parsons et al. (2000); Jian et al. (2005); Venkatraman et al. (2005). For description of the Cambridge Structural Database, see: Allen (2002). For the antitumor, antiviral and antifungal activity of thiosemicarbazones, see: Kalinowski et al. (2009); Smee \& Sidwell (2003); Beraldo \& Gambino (2004). For their metal-chelating properties, see: Paterson \& Donnelly (2011); Casas et al. (2000).

$\beta=99.77$ (3) ${ }^{\circ}$
$V=1111.6$ (4) \AA^{3}
$Z=4$
$\mathrm{Cu} K \alpha$ radiation

Data collection
Kuma KM-4 diffractometer
Absorption correction: for a
cylinder mounted on the φ axis
(Dwiggins, 1975)
$T_{\text {min }}=0.435, T_{\text {max }}=0.485$
3800 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.217$
$S=1.04$
1942 reflections

$$
\begin{aligned}
& \mu=2.48 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& 0.55 \times 0.30 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

> 1942 independent reflections
> 1252 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.084$
> 3 standard reflections every 100 reflections \quad intensity decay: 3.3%

138 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.38$ e \AA^{-3}
$\Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 3$	0.86	2.12	$2.553(5)$	111
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.86	2.67	$3.465(3)$	154

Symmetry code: (i) $-x+1,-y+1,-z$.

Data collection: KM-4 Software (Kuma Diffraction, 1991); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999), Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2024).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Basu, A. \& Das, G. (2011). Dalton Trans. 40, 2837-2843.
Beraldo, H. \& Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Casas, J. S., Garcia-Tasende, M. S. \& Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.
Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Jian, F.-F., Bai, Z.-S., Xiao, H.-L. \& Li, K. (2005). Acta Cryst. E61, o653-o654.
Kalinowski, D. S., Quach, P. \& Richardson, D. R. (2009). Future Med. Chem. 1, 1143-1151.
Kuma Diffraction (1991). KM4 Software. Kuma Diffraction, Wrocław, Poland.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Park, Y. J. \& Ahn, C. T. (1985). J. Korean Chem. Soc. 29, 73-79.
Parsons, S., Smith, A. G., Tasker, P. A. \& White, D. J. (2000). Acta Cryst. C56, 237-238.
Paterson, B. M. \& Donnelly, P. S. (2011). Chem. Soc. Rev. 40, 3005-3018.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Smee, D. F. \& Sidwell, R. W. (2003). Antiviral Res. 57, 41-52.
Venkatraman, R., Swesi, A. T. \& Yamin, B. M. (2005). Acta Cryst. E61, o3914o3916.

Experimental

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{~S}$
$M_{r}=225.29$
Monoclinic, $P 2_{1} / c$

$$
\begin{aligned}
& a=9.038(2) \AA \\
& b=10.515(2) \AA \\
& c=11.869(2) \AA
\end{aligned}
$$

supplementary materials

Acta Cryst. (2011). E67, o3010 [doi:10.1107/S1600536811042504]

4-(3-Fluorophenyl)-1-(propan-2-ylidene)thiosemicarbazone

B. Miroslaw, D. Szulczyk, A. E. Koziol and M. Struga

Comment

Thiosemicarbazones are widely studied due to their antitumor, antiviral and antifungal activity (Kalinowski et al., 2009; Smee \& Sidwell, 2003; Beraldo \& Gambino, 2004) as well as for their metal chelating properties (Paterson \& Donnelly, 2011; Casas et al., 2000). The molecular structure of the title compound (I) with numbering scheme is shown in Fig. 1. Recently, two crystal forms of 4-phenyl-1-(propan-2-ylidene)thiosemicarbazone have been reported. However, they were not identified as polymorphs (Jian et al., 2005, CSD Refcode: FIDDUS; Venkatraman et al., 2005, Refcode: FIDDUS01). Crystals of FIDDUS were obtained by recrystallisation from dimethyl sulfoxide, while those of FIDDUS01 from an acetone:methanol solution. The crystal structure reported here is similar to the lower density polymorph, FIDDUS $\left(d=1.258 \mathrm{Mg} / \mathrm{m}^{-3} v s\right.$. $1.302 \mathrm{Mg} / \mathrm{m}^{-3}$ for FIDDUS01).

The bond lengths confirm the thione form of the title molecule, the presence of a double bond between the N3 and C2 atoms, and they indicate some π-delocalisation along the thiosemicarbazone fragment. The S 1 and the hydrazinic N3 atoms are in the trans conformation with the $\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 3$ torsion angle equal to -177.7 (3) ${ }^{\circ}$. This conformation enables the formation of an intramolecular $\mathrm{N} 1-\mathrm{H} \cdots \mathrm{N} 3$ hydrogen bond. Consequently, the thiosemicarbazone part of the molecule ($\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1-\mathrm{N} 2-\mathrm{N} 3$) is planar, with the maximum deviation from the mean plane of these atoms being 0.014 (2) \AA for N3. This conformation seems to be characteristic of the thiosemicarbazone fragment, and it is observed in all related crystal structures found in the CSD (Allen, 2002) [Refcodes: CUZXOK (Parsons et al., 2000), DAWPOG (Park \& Ahn, 1985), FIDDUS (Jian et al., 2005), FIDDUS01 (Venkatraman et al., 2005) and UQOWAZ (Basu \& Das, 2011))]. The dihedral angles between the central thiosemicarbazone plane of (\mathbf{I}) and the planes formed by the propan-2-ylidene ($\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$) and phenyl (C 1 P to C 6 P) groups are 16.7 (4) and $38.9(2)^{\circ}$, respectively. For comparison, the respective angles in FIDDUS are 14.0° and 38.6°; and in FIDDUS01 they are 23.6° and 42.8°.

The thiosemicarbazone part is also involved in intermolecular ($\mathrm{N} 2-\mathrm{H} \cdots \mathrm{S} 1$) hydrogen bonds (Fig. 2, Table 1), resulting in $R^{2}{ }_{2}(8)$ centrosymmetric dimers. (The same pattern have been found in DAWPOG, FIDDUS, FIDDUS01 and UQOWAZ.) The main difference between the two aforementioned polymorphs is the orientation of the molecules relative to the twofold screw axes. In FIDDUS and in (I) the 2_{1} screw axis passes through the $\mathrm{C} 1-\mathrm{N} 1$ bond, while in FIDDUS01 it runs through the N2—N3 bond (Figs. 3 and 4). Additionally, in FIDDUS01 the thiosemicarbazone plane is almost perpendicular to the b direction (85.7 ${ }^{\circ}$) while in FIDDDUS and in (I) the corresponding angles are 62.0° and $59.9(4)^{\circ}$, respectively. In (I) and in FIDDUS there are offset stacking interactions between the aromatic rings (Fig. 3) with interplanar distances of 3.5 (1) \AA and $3.6 \AA$, respectively. The physical consequence of these stacking interactions is the yellow colour of FIDDUS crystals, in contrast to the colourless crystals of FIDDUS01, where overlapping of the heteroatoms is observed (Fig. 4). Surprisingly, the crystals of (I) are colourless, despite the similar molecular and crystal structure with FIDDUS. This could be explained by the changes in the electronic structure of the aromatic ring in molecule (I) caused by the electronegative fluorine substituent. The presence of the fluorine atom in (I) causes only slight differences in crystal packing with respect to FIDDUS. In (I) there is a short intermolecular contact between the F 1 and $\mathrm{C} 2(1-x, 1 / 2+y, 0.5-z)$ atoms with a distance of 3.107 (5) \AA (the sum of van der Waals radii is $3.17 \AA$).

supplementary materials

Experimental

The title compound, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{~S}$, was obtained in the reaction of 4-amino-1,7,8,9,10-pentamethyl-4azatricyclo[2.5.1.0 ${ }^{2,6}$] dec-8-ene-3,5-dione and 3-fluorophenyl isothiocyanate in acetonitrile. The mixture of the reagents was refluxed for 6 h . After heating, the solvent was removed on a rotary evaporator. The residue was purified by column chromatography (chloroform:methanol 5.5:0.5). Two products were obtained in this reaction, viz.: 1-(3-fluorophenyl)-3-(1,7,8,9,10-pentametyl-3,5-dioxo-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-en-4-yl)thiourea (60%) and 4-(3-fluorophenyl)-1-(propan2 -ylidene)thiosemicarbazone (40%). The title compound was recrystallised from acetonitrile.

Refinement

All C-bonded H atoms were positioned geometrically and allowed to ride on the attached atom with $\mathrm{C}-\mathrm{H}$ bond lengths of $0.93 \AA$ for aromatic atoms and $0.96 \AA$ for methyl groups. The positions of N -bonded H atoms were located in the difference electron density maps and then constrained with an $\mathrm{N}-\mathrm{H}$ distance of $0.86 \AA . U_{\text {iso }}(\mathrm{H})$ values were fixed to $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Figures

Fig. 1. Molecular structure of the title compound with 50% probability displacement ellipsoids. H atoms are shown as small spheres of an arbitrary size. Thin single line represents the intramolecular hydrogen bond.

Fig. 2. Dimer in (I) formed by hydrogen bonds around a centre of symmetry.

Fig. 3. Orientation of molecules in relation to the 2_{1} screw axes in (I). View along the b axis. Green symbols indicate the positions of 2_{1} screw axes in the unit cells.

Fig. 4. Orientation of molecules in relation to the 21 screw axes in FIDDUS01. View along b axis. Green symbols indicate positions of 2_{1} screw axes in the unit cells.

N-(3-fluorophenyl)-2-(propan-2-ylidene)hydrazinecarbothioamide

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{~S}$
$F(000)=472$
$M_{r}=225.29$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.038(2) \AA$
$b=10.515$ (2) \AA
$c=11.869(2) \AA$
$\beta=99.77(3)^{\circ}$
$V=1111.6$ (4) \AA^{3}
$D_{\mathrm{x}}=1.346 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{CuK} \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 75 reflections
$\theta=6-20^{\circ}$
$\mu=2.48 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Plate, colourless
$Z=4$
$0.55 \times 0.30 \times 0.10 \mathrm{~mm}$

Data collection

Kuma KM-4
diffractometer
Radiation source: fine-focus sealed tube
graphite
$\omega-2 \theta$ scans
1252 reflections with $I>2 \sigma(I)$

Absorption correction: for a cylinder mounted on the φ axis $\quad k=-12 \rightarrow 12$
(Dwiggins, 1975)
$T_{\text {min }}=0.435, T_{\text {max }}=0.485$
3800 measured reflections
1942 independent reflections
$R_{\text {int }}=0.084$
$\theta_{\max }=67.7^{\circ}, \theta_{\min }=5.0^{\circ}$
$h=-10 \rightarrow 10$
$l=0 \rightarrow 14$
3 standard reflections every 100 reflections
intensity decay: 3.3\%

Refinement

Refinement on F^{2}	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$	Hydrogen site location: inferred from neighbouring sites
$w R\left(F^{2}\right)=0.217$	H -atom parameters constrained
$S=1.04$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1522 P)^{2}\right]$
1942 reflections	where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
138 parameters	$(\Delta / \sigma)_{\max }=0.013$
0 restraints	$\Delta \rho_{\max }=0.38 \mathrm{e} \AA^{-3}$
	$\Delta \rho_{\min }=-0.39 \mathrm{e} \AA^{-3}$

Special details

Experimental. cylinder dimensions used for absorption correction: 0.2 mm radius and a 0.1 mm height

supplementary materials

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} *^{\prime} / U_{\text {eq }}$
C1	$0.4980(4)$	$0.4433(3)$	$0.2021(3)$	$0.0493(8)$
C1P	$0.3908(4)$	$0.4006(4)$	$0.3776(3)$	$0.0506(9)$
C2	$0.8673(4)$	$0.3455(4)$	$0.1991(3)$	$0.0557(9)$
C2P	$0.3249(5)$	$0.5171(4)$	$0.3911(3)$	$0.0566(9)$
H2P	0.3381	0.5864	0.3451	0.068^{*}
C3	$0.9760(5)$	$0.2575(6)$	$0.2680(4)$	$0.0785(14)$
H3A	0.9395	0.2344	0.3366	0.094^{*}
H3B	1.0715	0.2989	0.2876	0.094^{*}
H3C	0.9870	0.1823	0.2242	0.094^{*}
C3P	$0.2380(5)$	$0.5252(4)$	$0.4767(4)$	$0.0613(10)$
C4	$0.9221(5)$	$0.4267(5)$	$0.1128(4)$	$0.0718(13)$
H4A	0.9086	0.3830	0.0408	0.086^{*}
H4B	1.0268	0.4448	0.1373	0.086^{*}
H5C	0.8665	0.5049	0.1046	0.086^{*}
C4P	$0.2123(5)$	$0.4283(5)$	$0.5460(4)$	$0.0675(11)$
H4P	0.1521	0.4384	0.6015	0.081^{*}
C5P	$0.2802(6)$	$0.3136(5)$	$0.5299(4)$	$0.0700(12)$
H5P	0.2662	0.2447	0.5761	0.084^{*}
C6P	$0.3682(5)$	$0.2991(4)$	$0.4467(4)$	$0.0639(11)$
H6P	0.4124	0.2209	0.4370	0.077^{*}
N1	$0.4913(4)$	$0.3838(3)$	$0.3000(3)$	$0.0564(8)$
H1	0.5586	0.3263	0.3189	0.068^{*}
N2	$0.6276(4)$	$0.4233(3)$	$0.1607(3)$	$0.0560(8)$
H2	0.6427	0.4587	0.0983	0.067^{*}
N3	$0.7337(4)$	$0.3444(4)$	$0.2220(3)$	$0.0567(8)$
S1	$0.36293(11)$	$0.53442(10)$	$0.12753(8)$	$0.0578(4)$
F1	$0.1751(4)$	$0.6403(3)$	$0.4920(3)$	$0.0941(11)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0477(18)$	$0.0465(19)$	$0.0519(19)$	$0.0021(16)$	$0.0037(14)$	$-0.0012(15)$
C1P	$0.0412(17)$	$0.061(2)$	$0.0499(18)$	$0.0004(16)$	$0.0070(14)$	$0.0020(16)$
C2	$0.052(2)$	$0.057(2)$	$0.058(2)$	$0.0001(18)$	$0.0065(17)$	$-0.0026(18)$
C2P	$0.063(2)$	$0.052(2)$	$0.055(2)$	$0.0007(18)$	$0.0113(17)$	$0.0036(17)$

sup-4

supplementary materials

C3	$0.062(3)$	$0.099(3)$	$0.073(3)$	$0.027(3)$	$0.006(2)$	$0.007(3)$
C3P	$0.072(3)$	$0.061(2)$	$0.0521(19)$	$0.012(2)$	$0.0145(18)$	$-0.0026(18)$
C4	$0.049(2)$	$0.087(3)$	$0.078(3)$	$-0.008(2)$	$0.0078(19)$	$0.011(3)$
C4P	$0.071(3)$	$0.078(3)$	$0.058(2)$	$0.008(2)$	$0.0247(19)$	$0.007(2)$
C5P	$0.075(3)$	$0.071(3)$	$0.068(3)$	$0.001(2)$	$0.026(2)$	$0.016(2)$
C6P	$0.068(3)$	$0.057(2)$	$0.067(2)$	$0.006(2)$	$0.0116(19)$	$0.0073(19)$
N1	$0.0545(18)$	$0.0620(19)$	$0.0541(17)$	$0.0156(16)$	$0.0133(13)$	$0.0080(15)$
N2	$0.0498(17)$	$0.0609(18)$	$0.0572(18)$	$0.0055(15)$	$0.0087(13)$	$0.0070(15)$
N3	$0.0502(17)$	$0.064(2)$	$0.0564(17)$	$0.0092(15)$	$0.0107(14)$	$0.0049(15)$
S1	$0.0535(6)$	$0.0664(7)$	$0.0528(6)$	$0.0100(5)$	$0.0069(4)$	$0.0064(4)$
F1	$0.139(3)$	$0.0729(18)$	$0.0802(18)$	$0.0358(19)$	$0.0475(18)$	$0.0055(15)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 1$	$1.331(5)$
$\mathrm{C} 1-\mathrm{N} 2$	$1.361(5)$
$\mathrm{C} 1-\mathrm{S} 1$	$1.681(4)$
$\mathrm{C} 1 \mathrm{P}-\mathrm{C} 6 \mathrm{P}$	$1.382(6)$
$\mathrm{C} 1 \mathrm{P}-\mathrm{C} 2 \mathrm{P}$	$1.383(6)$
$\mathrm{C} 1 \mathrm{P}-\mathrm{N} 1$	$1.409(5)$
$\mathrm{C} 2-\mathrm{N} 3$	$1.282(5)$
$\mathrm{C} 2-\mathrm{C} 4$	$1.482(6)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.489(6)$
$\mathrm{C} 2 \mathrm{P}-\mathrm{C} 3 \mathrm{P}$	$1.389(6)$
$\mathrm{C} 2 \mathrm{P}-\mathrm{H} 2 \mathrm{P}$	0.9300
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9600
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9600
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9600
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{N} 2$	$114.4(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$126.2(3)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	$119.4(3)$
$\mathrm{C} 6 \mathrm{P}-\mathrm{C} 1 \mathrm{P}-\mathrm{C} 2 \mathrm{P}$	$120.3(4)$
$\mathrm{C} 6-\mathrm{C} 1 \mathrm{P}-\mathrm{N} 1$	$117.9(4)$
$\mathrm{C} 2 \mathrm{P}-\mathrm{C} 1 \mathrm{P}-\mathrm{N} 1$	$121.6(4)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 4$	$126.1(4)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 3$	$115.8(4)$
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 3$	$118.1(4)$
$\mathrm{C} 1 \mathrm{P}-\mathrm{C} 2 \mathrm{P}-\mathrm{C} 3 \mathrm{P}$	$116.6(4)$
$\mathrm{C} 1 \mathrm{P}-\mathrm{C} 2 \mathrm{P}-\mathrm{H} 2 \mathrm{P}$	121.7
$\mathrm{C} 3 \mathrm{P}-\mathrm{C} 2 \mathrm{P}-\mathrm{H} 2 \mathrm{P}$	121.7
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{C} 4 \mathrm{P}-\mathrm{C} 3 \mathrm{P}-\mathrm{F} 1$	$118.1(4)$
$\mathrm{C} 4 \mathrm{P}-\mathrm{C} 3 \mathrm{P}-\mathrm{C} 2 \mathrm{P}$	(4)
$\mathrm{F} 1-\mathrm{C} 3 \mathrm{P}-\mathrm{C} 2 \mathrm{P}$	

C3P-C4P	1.354 (6)
C3P-F1	1.362 (5)
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9600
C4-H4B	0.9600
C4-H5C	0.9600
C4P-C5P	1.381 (7)
C4P-H4P	0.9300
C5P-C6P	1.377 (6)
C5P-H5P	0.9300
C6P-H6P	0.9300
N1-H1	0.8600
N2-N3	1.379 (5)
N2-H2	0.8600
C2- $24-\mathrm{H} 4 \mathrm{~B}$	109.5
H4A-C4-H4B	109.5
C2-C4-H5C	109.5
H4A-C4-H5C	109.5
H4B-C4-H5C	109.5
C3P-C4P-C5P	116.6 (4)
C3P-C4P-H4P	121.7
C5P-C4P-H4P	121.7
C6P-C5P-C4P	121.3 (4)
C6P-C5P-H5P	119.3
C4P-C5P-H5P	119.3
C5P-C6P-C1P	120.1 (4)
C5P-C6P-H6P	119.9
C1P-C6P-H6P	119.9
C1-N1-C1P	129.9 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$	115.0
$\mathrm{C} 1 \mathrm{P}-\mathrm{N} 1-\mathrm{H} 1$	115.0
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 3$	117.8 (3)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2$	121.1
N3-N2-H2	121.1
C2-N3-N2	118.6 (4)

supplementary materials

$\mathrm{C} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A} \quad 109.5$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 3$	0.86	2.12	$2.553(5)$	111
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.86	2.67	$3.465(3)$	154

Symmetry codes: (i) $-x+1,-y+1,-z$.

Fig. 1

supplementary materials

Fig. 2

Fig. 3

supplementary materials

Fig. 4

